

Inferring Internet Server IPv4 and IPv6 Address Relationships

Robert Beverly, Arthur Berger, Nicholas Weaver, & Larry Campbell

Outline

- Introduction
- Opportunistic technique using two-level DNS hierarchy
 - Data set collected by Akamai
- Active probing using a chain of CNAME's
- Applied to sub-set of Akamai data
- Targeted fingerprinting technique using TCP timestamps
 - Applied to Alexa top 100,000 web servers

Introduction

- Sibling Resolution: Given a candidate (IPv4,IPv6) address pair, determine if these addresses are assigned to the same cluster, device, or interface.
- Why?
- IPv4 and IPv6 expected to co-exist \rightarrow dual-stacked devices
- Track IPv6 evolution
- Measurements of IPv4 vs. IPv6 performance

Opportunistic DNS Technique

Data Set from Akamai Nameservers

- Six month period from 17 Mar 2012 to 13 Sep 2012.
- 674,000 (v4, v6) pairs.
- 271,000 unique v4 addresses.
- 282,000 unique v6 addresses.
- 213 countries.

Example of Equivalence Classes

Example of Equivalence Classes

The address pairs partition into 4 equivalence classes:

- two are *1-1*
- one is 2-1
- one is *1-4*

Will focus first on equivalence classes that are 1-1

Example of Equivalence Classes

- 2 of the 4 equivalence classes (50%) are 1-1.
- 4 of the 12 addresses (33%) are 1-1.
- 2 of the 8 address pairs (25%) are 1-1.

Prevalence of 1-1 equivalence classes

Data Set	Num of pairs		% of v4+v6 in 1-1 eq cls	% of pairs in 1-1 eq cls
Addresses	674,000	77%	34%	14%
Example	8	50%	33%	25%

Prevalence of 1-1 equivalence classes

Data Set	Num of pairs	% of eq cls that are 1-1	% of v4+v6 in 1-1 eq cls	% of pairs in 1-1 eq cls
Addresses	674,000	77%	34%	14%
Aggregate to prefixes (before)	238,000	67%	31%	18%
Aggregate to prefixes (after)	260,000	83%	55%	39%
Example	8	50%	33%	25%

Prevalence of 1-1 equivalence classes

Data Set	Num of pairs	% of eq cls that are 1-1	% of v4+v6 in 1-1 eq cls	% of pairs in 1-1 eq cls
Addresses	674,000	77%	34%	14%
Aggregate to prefixes (before)	238,000	67%	31%	18%
Aggregate to prefixes (after)	260,000	83%	55%	39%
Restrict to last week and aggregate to prefixes (after)	49,000	92%	83%	75%
Aggregate to AS's (after)	55,000	95%	92%	89%
Example	8	50%	33%	25%

Heat Map of all equivalence classes

Complementary Distributions

Outline

- Introduction
- Opportunistic technique using two-level DNS hierarchy
 - Data set collected by Akamai
- Active probing using a chain of CNAME's
- Applied to sub-set of Akamai data
- Targeted fingerprinting technique using TCP timestamps
 - Applied to Alexa top 100,000 web servers

dig TXT @8.8.8.8 cname1e6464.nonce.v6(dnstest.)csi.berkeley.edu

"

Domain controlled by N. Weaver

dig TXT @8.8.8.8 cname1e6464.nonce.v6.dnstest.icsi.berkeley.edu

"

The NS record has glue that is only a AAAA

dig TXT @8.8.8.8 cname1e6464.nonce.v6.dnstest.icsi.berkeley.edu

CNAME cname2e6464.nonce.2607yf8b0y400dyc02yy16e.v4.dnstest.icsi.berkeley.edu. " Encoding of 2607:f8b0:400d:c02::16e

©2012 AKAMAI | FASTER FORWARDTM

dig TXT @8.8.8.8 cname1e6464.nonce.v6.dnstest.icsi.berkeley.edu

CNAME

cname2e6464.nonce.2607yf8b0y400dyc02yy16e.v4.dnstest.icsi.berkeley.edu.

CNAME

cname3e6464.nonce.2607yf8b0y400dyc02yy16e.74x125x176x45.v6.dnstest.icsi.berkeley.edu.

Encoding of 74.125.176.45

dig TXT @8.8.8.8 cname1e6464.nonce.v6.dnstest.icsi.berkeley.edu

CNAME

cname2e6464.nonce.2607yf8b0y400dyc02yy16e.v4.dnstest.icsi.berkeley.edu.

CNAME

cname3e6464.nonce.2607yf8b0y400dyc02yy16e.74x125x176x45.v6.dnstest.icsi.berkeley.edu.

CNAME

txt.nonce.2607yf8b0y400dyc02yy16e.74x125x176x45.2607yf8b0y400dyc02yy168.y4.dnstest.icsi.berkeley.edu.

Probe of GoogleDNS anycast address

dig TXT @8.8.8.8 cname1e6464.nonce.v6.dnstest.icsi.berkeley.edu

CNAME

cname2e6464.nonce.2607yf8b0y400dyc02yy16e.v4.dnstest.icsi.berkeley.edu.

CNAME

cname3e6464.nonce.2607yf8b0y400dyc02yy16e.74x125x176x45.v6.dnstest.icsi.berkeley.edu.

CNAME

txt.nonce.2607yf8b0y400dyc02yy16e.74x125x176x45.2607yf8b0y400dyc02yy168.v4.dnstest.icsi.berkeley.edu.

TXT

"nonce" "2607:f8b0:400d:c02::16e" "74.125.176.45" "2607:f8b0:400d:c02::168" "74.125.176.32"

Data Set from Active DNS probing

- Determined the open resolvers in the passive-DNS data set:
 - 6,581 v4 and 2,658 v6 addresses
- Probe each 32 times in 2 hours on Sept 14, 2012.
- Each 4-tuple of v4/v6/v4/v6 yields either 1, 2, or 4 (v4, v6) address pairs.

Complementary distribution of the open resolvers, indexed by number of probes

Outline

- Introduction
- Opportunistic technique using two-level DNS hierarchy
 - Data set collected by Akamai
- Active probing using a chain of CNAME's
- Applied to sub-set of Akamai data
- Targeted fingerprinting technique using TCP timestamps
 - Applied to Alexa top 100,000 web servers

Targeted, Active Technique

- Note that IPv4 and IPv6 share a common transport-layer (TCP) stack.
- Leverage prior work on physical device fingerprinting using TCP timestamp clock skew [Kohno 2005]
- TCP timestamp option: "TCP Extensions for High Performance" [RFC1323, May 1992]
- Widespread support for TCP timestamps (modulo middleboxes, proxies). Enabled by default.

TCP Timestamp Clock Skew

- TS value: 4 bytes with current clock
- TS clock ≠ system clock
- TS clock frequently unaffected by system clock adjustments (e.g. NTP)
- **Basic Idea:** Probe over time. Fingerprint is clock *skew* (and remote clock resolution).
- Given a sequence of timestamp offsets, use linear programming to obtain a line that minimizes distance to points, constrained to be under data points. [Moon, 1999]

Control test on known distinct machines

Control test on known **common** machine

Inferred clock skew to

www.socialsecurity.gov

Sibling Inference at Alexa Websites

- Analyze Alexa top 100,000 websites
- Pull A and AAAA records
- 1398 (1.4%) have IPv6 DNS
- Repeatedly fetch root HTML page via IPv4 and IPv6 via deterministic IP address
- Record all packets
- Infer siblings if the angle between the two fitted lines is within 1 degree.

Sibling Inference at Alexa Websites

Case	Inference	Count
v4 and v6 no timestamps	?	94 (6.7%)
v4 or v6 (but not both) no timestamps	Non-siblings	101 (7.2%
v4 and v6 non-monotonic	?	109 (7.8%)
v4 or v6 (but not both) non-monotonic	Non-siblings	140 (10.0%)

- Our technique fails when timestamps are not monotonic across TCP flows (e.g. load-balancer or BSD OS)
- Or, when timestamps are not supported (e.g. middlebox)
- But when this occurs for just one of the addresses, can infer nonsiblings

Sibling Inference at Alexa Websites

Case	Inference	Count
v4 and v6 no timestamps	?	94 (6.7%)
v4 or v6 (but not both) no timestamps	Non-siblings	101 (7.2%
v4 and v6 non-monotonic	?	109 (7.8%)
v4 or v6 (but not both) non-monotonic	Non-siblings	140 (10.0%)
Clock skew satisfies criterion	Siblings	839 (60.0%)
Clock skew fails criterion	Non-siblings	115 (8.3%)
Total		1398 (100%)

- 25.5% (356) non-siblings
- 43% of skew-based non-siblings are in different ASes

Summary: Characterizing the inter-relation of v4 and v6 among Internet DNS and web servers.

Presented three methodologies:

- 1. a passive DNS collection using a two-level DNS hierarchy
- 2. an active DNS probing system using a chain of CNAME's, and can force resolvers to utilize TCP
- 3. an active TCP physical device fingerprinting technique that more precisely identifies v4 and v6 addresses present on the same machine.

Summary: Characterizing the inter-relation of v4 and v6 among Internet DNS and web servers.

Presented three methodologies:

- 1. a passive DNS collection using a two-level DNS hierarchy
- 2. an active DNS probing system using a chain of CNAME's, and can force resolvers to utilize TCP
- 3. an active TCP physical device fingerprinting technique that more precisely identifies v4 and v6 addresses present on the same machine.

We find:

- 1. significant complexity, as measured by large equivalence classes.
- 2. 25% of the top Alexa sites that resolve to A and AAAA are non-siblings.

people.csail.mit.edu/awberger/papers/v4_v6_address_relationships.pdf

Additional Slides

Illustration:

\$ dig +trace +additional a10.dspg1.akamai.net

Additional Section from First Level Nameserver:

n0dspg1.akamai.net.	21600	IN	A	195.59.43.138	
a0dspg1.akamai.net.	32400	IN	AAAA	2001:5000:402:f000	:2b85:c412:8ce4:c418
n5dspg1.akamai.net.	32400	IN	A	23.3.10.154	
n3dspg1.akamai.net.	43200	IN	A	23.3.10.150	
aldspgl.akamai.net.	21600	IN	AAAA	2001:218:2007:ffff	:9208:c412:8ce4:c418
n2dspg1.akamai.net.	32400	IN	A	193.108.88.193	1
nldspgl.akamai.net.	43200	IN	A	61.213.146.8	/ /
n4dspg1.akamai.net.	21600	IN	A	66.171.230.14	Encodes the IPv4 source address of the incoming DNS guery

Illustration:

\$ dig +trace +additional a10.dspg1.akamai.net

Additional Section from First Level:

20

20

n0dspg1.akamai.net.	21600
a0dspg1.akamai.net.	32400
n5dspg1.akamai.net.	32400
n3dspg1.akamai.net.	43200
aldspg1.akamai.net.	21600
n2dspg1.akamai.net.	32400
nldspgl.akamai.net.	43200
n4dspg1.akamai.net.	21600

Resolution of domain: a10.dspg1.akamai.net. a10.dspg1.akamai.net.

IN A 80.67.64.115 IN A 80.67.64.116

Note: protocol version of answer is independent of that used to transport the DNS messages

incoming DNS query

Active probing to open, recursive resolvers using a chain of CNAME's

Complementary distribution of the open resolvers

©2012 AKAMAI | FASTER FORWARD[™]

Graph of largest equiv. class, aggregated to AS's. 🤇

Timestamp offsets

Let t_i be the time at which the prober observes the *i*th v4 packet

Let T_i be the timestamp in the TCP options of the *i*th v4 packet.

Then the offset of the *i*th v4 packet = $(T_i - T_1) - (t_i - t_1)$

Likewise for the v6 packets.

Timestamp offsets

Let t_i be the time at which the prober observes the *i*th v4 packet

Let T_i be the timestamp in the TCP options of the *i*th v4 packet.

Then the offset of the *i*th v4 packet = $(T_i - T_1) - (t_i - t_1)$

Likewise for the v6 packets.

Given a sequence of timestamp offsets, use linear programming to obtain a line that minimizes distance to points, constrained to be under data points. [Moon, 1999]