IPv6 Alias Resolution via Induced Fragmentation

Billy Brinkmeyer, Robert Beverly, Matthew Luckie*, Justin Rohrer

Naval Postgraduate School *CAIDA {wdbrinkm,rbeverly,jprohrer}@nps.edu mjl@caida.org January 7, 2013

NPS IPv6 Measurement Meeting 2013

1/31

NPS-SIX 2013

Outline

- IPv6 Alias Resolution
- 3 Current Work

æ

イロト イヨト イヨト イヨト

The Problem

Problem Overview

The Problem:

- What is the topology of the IPv6 Internet?
- We tackle initial work on the "alias resolution" problem for IPv6 to infer router-level topologies.

< A > < > > <

Motivation

Why?

Alias Resolution:

 Given two IP addresses, determine whether they are assigned to different interfaces on the same physical router.

Motivation

- IPv6 finally experiencing non-trivial deployment
- Structure of IPv6 network (viz. resilience and security)
- Evolution of IPv6 network
- Long-term: Relation of IPv6 to IPv4

過 ト イ ヨ ト イ ヨ

IPv4 Alias Resolution

IPv4 Alias Resolution Approaches:

- Analytical:
 - Graph Analysis (Rocketfuel, APAR, etc)
 - DNS (Rocketfuel)
- Fingerprinting:
 - Common Source Address (Mercator)
 - Record Route (Discarte)
 - Pre-specified timestamps (Sherry IMC 2010)
 - IP ID (Ally, Radargun, MIDAR)

< A > < > > <

IP ID Fingerprinting

IP ID Fingerprinting

- IPv4 Identifier (ID) field used for fragmentation and reassembly
- All IPv4 packets have IP ID, including control-plane
- Observation: router architectures distribute forwarding, but centralize control-plane
- Observation: many router implementations use a sequential counter for IP ID
- Implication: can use IP ID counter as a fingerprint for alias resolution

Background Mo

Motivation

Prior Work (IPv6)

Prior Work (IPv6)

- All previous work relies on IPv6 source-routing (questionable long-term?).
- Waddington, et al. (2003): Atlas. Source-routed, TTL-limited UDP probe to *y* via *x*. Assuming v6 routing header processed first and (*x*, *y*) are aliases → receive "hop limit exceeded" and "port unreachable."
- Qian, et al. (2010): Route Positional Method. Send TTL-limited UDP probe to self via *x* and *y*. If aliases → receive TTL expiration from *x*.
- Qian, et al. (2010): Same idea, but using invalid bit sequence in IPv6 option header.
- The Hacker's Choice (THC) v6 attack toolkit: reduce IPv6 MTU.

э

・ロン ・四 ・ ・ ヨン

Outline

- 2 IPv6 Alias Resolution
 - 3 Current Work

æ

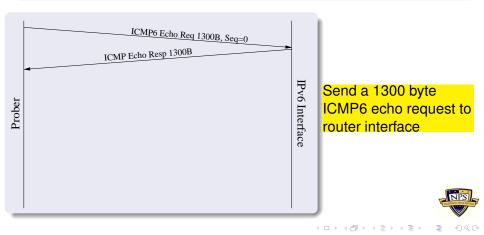
イロト イヨト イヨト イヨト

IPv6 Alias Resolution

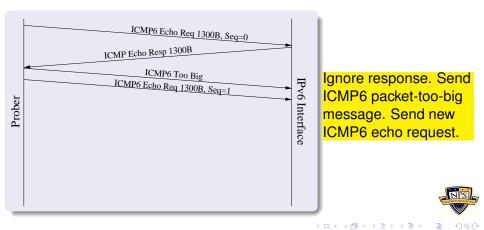
Our Work:

- "*IPv6 Alias Resolution via Induced Fragmentation*" (to appear: PAM 2013)
- Contributions:
 - New fingerprinting-based IPv6 alias resolution technique
 - Internet-wide probing of \approx 49,000 live IPv6 interfaces, 70% of which respond to our test
 - Validation of technique on subset of production IPv6 network

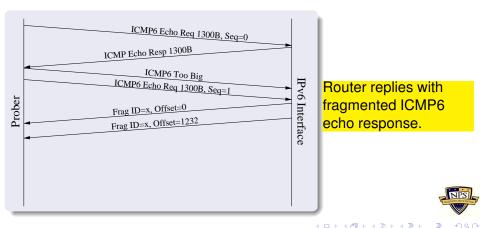
IPv6 Fragmentation

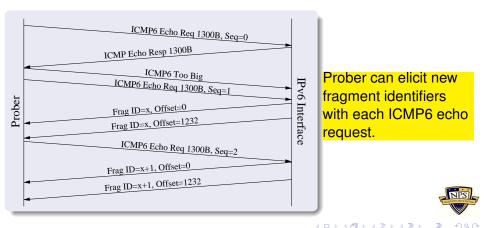

Eliciting Fragmented Responses

- We take inspiration from prior IPv4 IPID work
- But... no in-network fragmentation in IPv6 (push all work to end-hosts)
- If a router's next hop interface's MTU is less than the size of a packet, it sends an ICMP6 "packet too big" message to the source [RFC2460]
- End-host maintains destination cache state of per-destination maximum MTU
- End-hosts can fragment packets using an IPv6 fragmentation header



(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))


Too-Big Trick


Too-Big Trick

Too-Big Trick

Too-Big Trick

Initial Lab Testing

Controlled Environment

- Used GNS3 to build a virtualized 26-node Cisco network running IOS 12.4(20)T
- Found that Cisco uses sequential IPv6 fragment IDs
- Validated TBT and algorithm: 100% accuracy (f-score = 1.0) in finding 92/92 aliases (1584/1584 non-aliases)

End-Host Alias Resolution

- Recall that end-hosts may obtain multiple IPv6 addresses from their provider(s)
- TBT works on Linux, Windows, (but not BSD)

イロト イ理ト イヨト イヨト

IPv6 Alias Resolution

Results

How Effective is TBT on the Internet?

Efficacy of TBT

- Determine how many live IPv6 interfaces respond to TBT
- Determine in what way they respond

Methodology:

- Single vantage point
- TBT probe 49,000 interfaces:
 - 23,892 distinct IPv6 interfaces from CDN traceroutes (May, 2012)
 - 25,174 distinct IPv6 interfaces from CAIDA (August, 2012)
- Includes IPv6 router interfaces in 2617 autonomous systems
- Check for liveness
- Elicit 10 fragment IDs (20 total fragments)

・ロン ・四 ・ ・ ヨン

IPv6 Alias Resolution R

Results

TBT Response Characteristics

TBT Response Characteristics

	CDN		CAIDA	
ICMP6 responsive	18486/23892	77.4%	18959/25174	75.3%
Post-TBT unresp.	235/18486	1.3%	66/18959	0.4%
Post-TBT nofrags	5519/18486	29.9%	5800/18959	30.6%

• Of interfaces responding to "normal" ICMP6 echo request:

- pprox 30% do not send fragments after TBT
- \approx 1% become unresponsive!

A 1

∃ > 4 ∃

IPv6 Alias Resolution Re

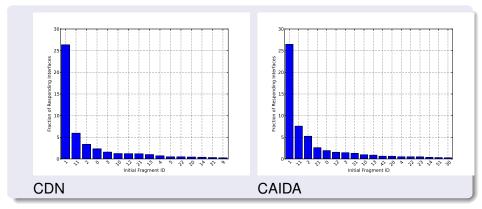
Results

TBT Response Characteristics

TBT Response Characteristics

	CDN		CAIDA	
TBT responsive	12732/18486	68.9%	13093/18959	69.1%
TBT sequential	8288/12732	65.1%	9183/13093	70.1%
TBT random	4320/12732	33.9%	3789/13093	28.9%

• Thus, \approx 70% return fragment identifiers after TBT


• Of those:

- 65 70% return *sequential IDs*!
- (Unfortunately, not same as IPv4 ID)
- Remaining \approx 30% use random IDs (confirmed as Juniper)

A D b 4 B b 4

Initial Fragment Identifiers

Results

- \approx 25% of interfaces responded with fragment ID=1 after first probe
- These routers sent no fragmented traffic prior to our probe!
- Observe: modes at multiples of 10. Naturally discovering aliases!

IPv6 Alias Resolution Algorithm

IPv6 Alias Resolution using TBT:

- IPv6 control plane traffic does not "spin" counter (unlike IPv4)
- Can reasonably expect IPv6 identifiers to have no natural velocity over probing interval

Algorithm

• IPv6 fragment identifiers are 32-bit (unlike IPv4)

IPv6 Alias Resolution

• Makes algorithm much simpler!

Caveats

- Many routers will have low fragment identifiers
- Fragment counter may be the same for many routers
- Intuition: cause counters of non-aliases to diverge
- Probe candidate pair (A, B) at different rates

IPv6 Alias Resolution Algorithm

IPv6 Alias Resolution

Algorithm

- 1: send(A, TooBig)
- 2: send(B, TooBig)
- 3: for *i* in range(5) do
- 4: $ID[0] \leftarrow echo(A)$
- 5: $ID[1] \leftarrow echo(B)$
- 6: if $(ID[0]+1) \neq ID[1]$ then
- 7: return *False*
- 8: $ID[2] \leftarrow echo(A)$
- 9: **if** $(ID[1]+1) \neq ID[2]$ **then**
- 10: return *False*
- 11: return True

< 同 ト < 三 ト < 三 ト

IPv6 Internet Alias Resolution

IPv6 Internet Alias Resolution

- Worked with a commercial service provider to get ground-truth on 8 physical routers in production
- Each of 8 routers has 2-21 IPv6 interfaces
- Using TBT, correctly identified 808/808 true aliases, with no false positives

IPv6 Internet Alias Resolution

• Current implementation in ScaPy: http://www.cmand.org/tbt

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Outline

- 2 IPv6 Alias Resolution
- 3 Current Work

æ

(日) (四) (三) (三)

Work beyond PAM Paper

End-Host Responsiveness

 Technique can also be applied to end-hosts (which may have multiple v6 interfaces)

Operating System	Initial Fragment ID	Subsequent Frag IDs
Ubuntu	Random	Sequential
Fedora	Random	Sequential
FreeBSD	Random	Random
OpenSUSE	Random	Sequential
Windows XP	1	Sequential
Windows 2003 Server	1	Sequential
Windows 7	0	2,4,6,8,

Large-Scale IPv6 Alias Resolution

Large-Scale IPv6 Alias Resolution

- PAM paper only demonstrates technique
- Algorithm is inefficient: $O(N^2)$.
- Can't directly use existing "scalable" time-series techniques (akin to radar-gun) because there is no natural underlying v6 fragment ID velocity.
- Instead, we have begun investigating a new algorithm.

25/31

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

NPS-SIX 2013

Large-Scale IPv6 Alias Resolution

Algorithm Intuition by Example

- Let A be an IPv6 router with 3 interfaces, B 2 interfaces, C 1 interface, D 2 interfaces.
- Assume initial fragment ID state:

A B C D 1 1 1 9

イロト イポト イヨト イヨ

Large-Scale IPv6 Alias Resolution

Spin all interfaces, get back ID ¹ :							
A1	A2	A3	B1	В2	C1	D1	D2
2	3	4	2	3	2	10	11

Spin all again. Get back ID ² :								
A1	A2	A3	B1	В2	C1	D1	D2	
5	6	7	4	5	3	12	13	

Observe:

- Any interface where $ID^1 + 1 = ID^2$: no aliases of that interface (because ID^2 would have to be > $ID^1 + 1$, eliminate. Here, eliminate C1.
- More generally, # aliases of an interface = $ID^2 ID^1$.
- Therefore: A1, A2, A3 are *possible* aliases

Large-Scale IPv6 Alias Resolution

Spin all interfaces, get back ID ¹ :								
A1	A2	A3	B1	В2	C1	D1	D2	
2	3	4	2	3	2	10	11	

• Spin all again. Get back <i>ID</i> ² :									
A1	A2	A3	В1	В2	C1	D1	D2		
5	6	7	4	5	3	12	13		

Observe:

- Other constraints given population: D1, D2 must be aliases (no other ID=13 exists).
- Further, A1, B2 cannot be aliases.
- Disambiguate remaining candidates using TBT PAM work.

Large-Scale IPv6 Alias Resolution

Initial Controlled Large-Scale Testing

• Again, used GNS3: 26 virtual routers

	naïve TBT	LS-TBT	Savings
Pings	8968	222	98%
Time	36:33	4:24	pprox 1/10 time
Aliases	54/54	54/54	-

- Promising start
- Work proceeding on Internet-wide probing

. ⊒ →

Future Work

Future Work

- Internet-wide IPv6 alias resolution
- Comparison between TBT and existing alias resolution schemes
- Use multiple vantage points to understand post-TBT non responsive interfaces

A (10) A (10) A (10)

Summary

Summary:

- New fingerprinting-based IPv6 alias resolution technique
- Internet-wide probing of \approx 49,000 live IPv6 interfaces, 70% of which respond to our test
- Validation of technique on subset of production IPv6 network

Thanks! Questions?

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))