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ABSTRACT

We present a spam detection technique that relies on neither
content nor reputation analysis. Instead, this work investi-
gates the discriminatory power of the email TCP packet
stream. From a corpus of packet flows and their corre-
sponding messages, we extract per-email transport-layer fea-
tures. While legitimate mail traffic is well-behaved, we ob-
serve small congestion windows, retransmissions, loss and
large latencies in spam flows. To identify the most selec-
tive flow properties, thereby adapting to different networks
and users, we build “SpamFlow.” On our data, SpamFlow
achieves greater than 90% classification accuracy while cor-
rectly identifying 78% of the false negatives from a pop-
ular content filter. By capitalizing on spam’s fundamen-
tal requirement to source large quantities of mail, often
from resource constrained hosts and networks, SpamFlow
promises a unique and difficult-to-subvert complement to
existing spam defenses.

1. INTRODUCTION

By all estimates, unsolicited email (spam) is a pressing
and continuing problem on the Internet. A consortium of
service providers reports that across more than 500M moni-
tored mailboxes, 75% of all received mail is spam, amounting
to more than 390B spam messages over a single quarter [15].
Spam clogs mailboxes, slows servers and lowers productivity.
Not only is spam annoying, it adversely affects the reliability
and stability of the global email system [1].

Popular methods for mitigating spam include content anal-
ysis [14, 20], collaborative filtering [23, 17], reputation anal-
ysis [24, 22], and authentication schemes [2, 27]. While
effective, none of these methods offer a panacea; spam is
an arms race where spammers quickly adapt to, and work
around, the latest prevention techniques.

We propose a fundamentally distinct approach from these
prior techniques to identifying spam. Our approach is based
upon two observations: first, spam’s low penetration rate re-
quires that spammers send extremely large volumes of mail
in order to remain commercially viable. Second, spammers
increasingly rely on zombie “botnets,” large collections of
compromised machines under common control [7], as unwit-
ting participants in sourcing spam [8]. Botnet hosts are typ-
ically widely distributed with low, asymmetric bandwidth
Internet connections. Combining these observations, we hy-
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Figure 1: SpamFlow examines only the TCP packet
stream to classify email.

pothesize that the network links and hosts which source
spam experience contention. We ask whether the transport-
level characteristics of email flows provide sufficient power
to differentiate spam from legitimate mail (ham).

In investigating this hypothesis, we gather a live data set
of email messages and their corresponding TCP [16] pack-
ets. We extract and examine per-email flow characteristics
in detail. Based on the statistical power of these flow fea-
tures, we develop “SpamFlow,” a spam classifier. In contrast
to existing approaches, SpamFlow relies on neither content
nor reputation analysis; Figure 1 shows this relation. Using
machine learning feature selection, SpamFlow identifies the
most selective flow properties, thereby allowing it to adapt
to different users and network environments.

By examining email at the transport layer, we hope to
exploit a fundamental weakness in sourcing spam, the re-
quirement to send large quantities of mail on resource con-
strained links. As the volume of spam is unlikely to abate,
SpamFlow represents a promising defense against a signifi-
cant source of unwanted mail. Our research thus makes the
following primary contributions:

1. Identification of TCP flow features that exhibit signif-
icant probability differences between spam and ham.

2. SpamFlow, a classifier to learn and leverage these sta-
tistical differences for > 90% accuracy, precision and
recall

3. Correct identification of 78% of the false negatives gen-
erated by SpamAssassin [14].
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Figure 2: Botnets and other high-volume sources of
spam may experience link contention which mani-
fests in the TCP packet stream at the receiver.

Consequently, we hope this paper serves to identify a new
area of spam research and present a working system which
sources of spam cannot easily evade.

2. EXPERIMENTAL METHODOLOGY

The intuition behind our scheme is simple. Because spam-
mers must send large volumes of mail, they transmit con-
tinuously, asynchronously and in parallel. In addition, the
sources of spam are frequently large compromised “botnets,”
which are resource constrained and typically connected to
the Internet via links with asymmetric bandwidths, e.g. aDSL
and cable modems (Figure 2).

Therefore the flows that comprise spam TCP traffic ex-
hibit behavior consistent with traffic competing for link ac-
cess. Thus, there is reason to believe that a spammer’s traf-
fic is more likely to exhibit TCP timeouts, retransmissions,
resets and highly variable round trip time (RTT) estimates.
Importantly, many of these TCP characteristics are observ-
able at the receiver, allowing remote inference.

Is it reasonable to believe that a spammer’s TCP/IP traf-
fic characteristics are sufficiently different than traffic from
Mail Transport Agents (MTAs) sending legitimate mail? To
systematically understand large-scale behavior, we instru-
ment an MTA to collect passive flow data for the email
messages it receives.

2.1 Data Collection

Figure 3 depicts our data collection methodology. Our
server has a dedicated, non-congested 100Mbps Ethernet
connection to the local network which is in turn connected
via multiple diverse Gigabit-speed links to the Internet. The
server processes SMTP [11] sessions and writes emails to
disk. In the header of each email, the server adds the IP
address and TCP port number of the remote MTA sending
the mail. Simultaneously, the server passively captures and
timestamps all SMTP packets. Each email is then manually
labeled as spam or ham to establish ground truth.

We coalesce the captured email packets into flows [10].
Let our server’s IP address be S with the SMTP service
running on port 25. Consider an email from a remote IP
address R and port p. Define a flow f as all TCP packets
(R:p) — (S:25) and (S:25) — (R:p). Using the IP and TCP
port number in the email headers, each email message is
unambiguously matched with its corresponding SMTP flow.
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Figure 3: Data collection: incoming SMTP packets
are captured and coalesced into flows. Each flow is
matched to a binary spam/ham ground-truth label.

Table 1: Flow features used in classification

| Feature [ Description |
Pkts Packets
Rxmits Retransmissions
RSTs Packets with RST bit set
FINs Packets with FIN bit set
Cwnd0 Times zero window advertised
CwndMin | Minimum window advertised
MaxlIdle Maximum idle time between packets
RTT Initial round trip time estimate
JitterVar | Variance of inter-packet delay

The port number is vital when receiving many, potentially
simultaneous, emails from the same source IP.

Over the course of one week in January, 2008, we col-
lect a total of 18,421 messages, 220 of which are legitimate
while the remaining 18,201 are spam (98.8%). Of the ham
messages, 39 are from unique mail domains.

2.2 Extracting Flow Features

We use the collected live data set to formalize a machine
learning problem. Properties of each flow (f;) provide the
learning features (x;). Currently we extract the features in
Table 1. While our flows are undirected, particular features
are directional, for instance received and sent packet counts,
RSTs, FINs and retransmissions'. Including directional fea-
tures, we consider 13 features in total for each flow.

Each f; corresponds to an email that is given a binary
yi € {£1} label. Our data thus includes the input vector
X; € ]Rd, d = 13 for flow f; and label y;. From these features,
we wish to determine which provide the most discriminative
power in picking out spam and how the number of training
examples affects performance.

2.3 Transport Characteristics

In this subsection, we examine three of the flow proper-
ties in detail to illustrate the differences between spam and
ham transport characteristics. Figure 4 compares the RT'T,
maximum idle time and FIN packet count between ham and
spam in the entire data set. Here we define the RTT as the
initial RTT estimate inferred by the three-way TCP hand-

!See [16] for a description of RSTs, FINs, congestion win-
dows and other details of the TCP specification.



Spam —— 3 " p(spam|rtt<x)
Ham - - - - i P(ham|rtt<x) -- - -- -
08 08
g ;
5 06 v 06
S
o =
g T
g ;
2 o4 0.4
5§ ;
(8]
02 o 02
o 0
0.0001 0.001 0.01 01 1 10 0.001 001 01 1 10
RTT (sec) RTT (sec)
(a) RTT Cumulative Probability Distribution (b) RTT Conditional Probability
1 T 1 . ;
Spam ——— FUREEE P(spam|maxidle<x)
Ham - - - - L P(ham|maxidle<x) -- - -- -
0.8 - 0.8
2 :
2 06 06
g ;
o =3
g T
B :
2 o4 i 0.4
5 ;
3 ;
02 02
0 0
0.01 01 1 10 100 1000 0.01 01 1 10 100
Maximum Idle (sec) Maximum Idle (sec)
(c) Maximum Idle Time Cumulative Probability Distri- (d) Maximum Idle Time Conditional Probability
bution
1 — 1
Spam —— JUPEE P(spam|recv_{fin>x)
Ham - - - - I P(ham|recv_fin>x) -- - - -
08 = 0.8
S 06 0.6
£ P
o =3
g T
|
g o4 - 04
E ;
3 .
02 - 0.2
0 0
0 1 2 0 1 2
Received FINs (pkt count) Received FINs (pkt count)
(e) Received FIN Count Cumulative Probability Distri- (f) Received FIN Count Conditional Probability
bution

Figure 4: Comparing spam and ham probability distributions for RTT, idle time and received FIN count
(left column). The resulting conditional probability distributions (right column) serve as a discriminator.



shake. Figure 4(a) shows the cumulative distribution of RT'T
times in our data. The difference between spam and ham is
evident. While more than 20% of ham flows have an RTT
less than or equal to 10ms, almost no spam flows have such a
small initial RTT. The RTT of nearly all ham flows is 100ms
or less. In contrast, 76% of spam flows have an RTT greater
than 100ms.

A feature such as RTT can be used to provide a classi-
fying discriminator, by taking the posterior probability of a
message being a spam, given that the RTT of the message
(rtt) is greater than r. Bayes’ rule provides a convenient
way to take the causal information and form a diagnosis:

P(rtt > r|spam)P(spam) (1)
P(rtt > )

Figure 4(b) shows the conditional probability of a spam
message across a continuous range of RTTs. We include the
probability of a ham message in the figure as well; these
probabilities sum to one, hence providing mirror images of
each other. With an RTT less than 10ms, the probabil-
ity is strongly biased toward being a ham message. In the
range [0.02,0.1]s, the probability estimate is relatively neu-
tral without a strong bias toward either category. However,
after 100ms, there is a strong tendency toward the message
being spam. This conditional probability distribution cor-
responds exactly to the data in Figure 4(a).

The differences in RTT raise several interesting points.
For some classes of users, it is not unexpected that legit-
imate email originates from geographically nearby sources.
Thus, it is prudent in many cases to take advantage of local-
ity of interest. RTT may be less of a distinguishing charac-
teristic though for users with e.g. frequent trans-continental
conversations. However, approximately 50% of the spam
messages have an RTT greater than 200ms, suggesting that
the remote machines are quite remote, overloaded or reside
on constrained links. Further, the ~ 10% of flows with an
RTT greater than one second cannot easily be explained by
geographic distance and are more likely evidence of persis-
tent congestion or end host behavior. We emphasize that
RTT is just one potential feature. In instances where users
receive legitimate email with large RTTs, the system may
use a threshold strategy or simply lower the relative impor-
tance of RTT in favor of other flow features. Just as content
filters are frequently customized per-user, the distinguishing
flow characteristics can be unique to each user based on his
or her receiving patterns.

As a second feature, consider maximum idle, the maxi-
mum time interval between two successive packets from the
remote MTA. In some instances the maximum idle time di-
rectly reflects the initial RTT, but is often different. Fig-
ure 4(c) depicts the cumulative distribution of maximum
idle times. Again, we see marked differences between the
character of spam and ham flows. For instance, nearly 40%
of spam flows have a maximum idle time greater than one
second, an artifact unlikely due to geographical locale. Fig-
ure 4(d) shows the conditional probability that the message
is spam. After a maximum idle of 250ms, the probabil-
ity tends strongly toward spam, as there are few legitimate
messages with such a long idle time.

Finally, to further emphasize that there are many poten-
tial features available in a flow (Table 1 enumerates all of the
features examined in this work), we examine TCP FIN seg-
ments. In a normal TCP session termination, each endpoint
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Figure 5: Non-features: distribution of received
TCP RST count is similar for spam and ham. Sur-
prisingly, this feature provides little discrimination.

issues a finish (FIN) packet to reliably end the connection.
Figure 4(e) shows that almost 45% of the spam email flows
do not send a FIN compared to only 5% for ham. Finally, a
small fraction of ham flows result in two FINs whereas only
0.7% of spam flows send more than one FIN. The resulting
conditional probabilities are given in Figure 4(f).

2.4 Non-features

A strength of a statistical approach is in systematically
identifying not only good features, but also poor features.
Several flow properties we initially expected to be a strong
indication of spam provide little differentiation. For exam-
ple, one might expect ill-behaved flows to tear down the
TCP connection using TCP resets (RSTs) rather than a
graceful shutdown with FIN packets. However, as Figure 5
demonstrates, the distribution of received RSTs is very sim-
ilar between spam and ham. Surprisingly, only 53% of ham
flows contain no reset packets while 28% contain two RSTs.

Manual investigation of the data reveals that many MTAs,
including Postfix and those of popular web mail services such
as Google and Yahoo, send RST packets after sending the
SMTP quit command. Detailed traces of this abortive close
phenomenon are provided in [3].

In all, the preceding analysis provides evidence that spam
and ham flows are sufficiently different to reliably distinguish
between them. The important point of note is that we ex-
amine neither the content nor origins of incoming emails.
Instead our determination of an email’s legitimacy is based
entirely upon the incoming flow’s transport characteristics.

3. RESULTS

Given our data set and problem formulation as described
in §2, we turn to exploiting the differences in transport char-
acteristics. In this Section we build and train a supervised
classifier and study its performance.

3.1 Building a Classifier

In this study, we use only the unique ham mails so that
our learning algorithm does not hone in on domain specific
effects. For instance, if a majority of email arrives from
Yahoo and Google MTAs, the primary features may reflect
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specific properties of flows from these servers (e.g. §2.4 and
[3]). While nothing precludes learning on the basis of multi-
ple mail flows from a single domain, we seek to understand
the generality of SMTP flow characteristics. Our results will
likely improve given additional training data from the same
domain and MTAs.

As a result, our data set contains many more spam mes-
sages than legitimate messages. To prevent a large discrep-
ancy in the complexion of training samples, we limit our
data set to include only five times as many spam messages
as valid messages. In each experiment, we select a random
set of spam messages that is no more than five times larger
than our ham corpus. Thus, the experiments include 39
valid emails and 195 randomly selected spam emails (234
total labeled messages and corresponding SMTP packets).

In each experiment, we take m data point pairs (xi,y;)
from the feature extraction of §2. The n data points are
then randomly separated into a training and test set. We
horizontally concatenate the y labels and n x d feature ma-
trix X to form D = [y7 : X]. To ensure generality, we
randomly permute rows of D for each experiment and run
each experiment ten times. For a permuted D, the training
data consists of the first ¢ rows of D while the test set is
formed from the remaining n — i. In this way the training
and test samples are different between experiments.

We use Support Vector Machines (SVMs) for classification
[25] as maximum margin kernel methods with regularization
perform well in practice on many tasks. However, we note
that the general insight behind SpamFlow is independent of
the exact learning algorithm.

3.2 Performance

Figure 6 shows the classification performance, measured
in terms of accuracy, precision and recall as a function of
the training size. We achieve approximately 90% accuracy
using 60 training emails and more than 80% accuracy with
only 20. This accuracy is relatively insensitive to the size of
the data set, for instance if we include only twice as many
spam as valid messages. However, the standard deviation is
tighter as the number of training emails increases.

Note that accuracy may be misleadingly high as the true
composition of our test set includes fives times as many spam
messages as ham. A naive classifier need only guess “spam”
to achieve high accuracy. Thus, we also include recall, or
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Figure 7: Forward fitting finds a set of features
|8] < d that provide the least training error. These
features are then used in test prediction.

the true positive rate and precision measures. Recall is the
ratio of true positives to the number of actual positives,
recall = TP/(TP + FN) and is therefore a proxy for the
number of false negatives. Precision is most important in
this application where the majority of messages are spam.
Precision is the ratio of true positives to all predicted pos-
itives, precision = TP/(TP + FP), providing a metric of
false positives. We see that at 40 training mails, the preci-
sion is more than 90%, corresponding to an average of two
false positives per iteration.

Our results are from a fourth degree polynomial kernel
without any SVM tuning or care in the input feature space.
The current false positive rate is higher than is ideal for
our application. With further effort, we can likely achieve
higher performance. However, we envision SpamFlow as an
additional metric in an overall decision tree in just the same
way modern filters use multiple tests to form an overall spam
decision.

3.3 Feature Selection

In order to optimize its performance to different users
and network environments, SpamFlow determines which fea-
tures provide the most discrimination power. To find these
features, we turn to feature selection methods [28].

Greedy forward fitting (FF) simply finds, in succession,
the next single feature that minimizes an error function.
Therefore, training error decreases monotonically with the
number of features. Training error is typically an effective
proxy for test error. We use SVM training accuracy as the
error function although forward fitting can be used with
any model and error function. Figure 7 provides the basic
intuition behind feature selection.

Forward fitting requires computing a combinatorial num-
ber of possible feature combinations. However forward fit-
ting effectively eliminates features that themselves are closely
dependent. Often two features individually provide signifi-
cant power, but the second feature provides little additional
classification power. For example, the RTT and maximum
idle time may be highly correlated. Forward fitting will con-
tinually seek the next best performing feature without this
potential dependence.

Figure 8 shows the cumulative probability distributions



0.4

T T
Feature
CwndMin —+—
RecvRxmit

RTT - % |-

03 [

0.2

PDF

0.1

0.05

Selection Order

(a) Primary features: minimum congestion window and
initial RTT are frequently the best feature; received
retransmits are a strong second feature.

0.4

T T
Feature
CwndMin —+—
RecvRxmit

RTT %
RecvFIN -8

. SentFIN

) Y SentRxmit
- SentRST - -e- - |4
CwndQ —A--

PDF

Selection Order

(b) Secondary features: have probability centered in the
middle of the selection order indicating flow properties
that distinguish ham and spam well.

Figure 8: Feature selection order probability distributions demonstrate the relative discriminatory strength

of different flow properties.

of the selection order for each feature. We split the results
into two plots only to improve readability. Figure 8(a) il-
lustrates that both RTT and CwndMin are the most likely
features to be selected first, each with approximately 40%
probability. Maxidle has around a 10% chance of being the
first selected feature and the other features comprise the re-
maining 10%. In other words, if the learner were given the
choice of one and only one feature with which to classify,
the learner would choose RTT or CwndMin. RecvRxmit
and SentRxmit are typically not the first or second feature,
but frequently serve as the third and fourth best features.
Figure 8(b) gives the secondary features, those that are more
likely to be chosen fifth or later in the order. These features
include the RecvFIN, SentFIN, Cwnd0 and JitterVar.

To leverage the results of feature selection, we measure the
prediction dependence on the number of best features. Fig-
ure 9 gives the results of performing forward fitting, mutual
information and random features in each round to select
a given number of best features. We include random fea-
tures to provide a useful baseline. As expected, the random
features perform the worst, yet still yield 60-70% accuracy.
Forward fitting achieves much higher accuracy, precision and
recall.

4. RELATED WORK

Current best practices for defending against spam are
multi-pronged with four main techniques: content filters,
collaborative filtering, reputation systems and authentica-
tion schemes. The most successful attempts thus far to com-
bat spam have relied on fundamental weaknesses in spam
messages or their senders. We review these systems as well
as previous network and traffic characterization studies.

Content Filtering: A wealth of content analysis sys-
tems are used to great effect today in filtering spam. Learn-
ing methods have been effectively applied to building classi-
fiers that determine discriminatory word features [20]. Such
content analyzers exploit the fact that a spam message con-

tains statistically different words from a user’s normal mail.
Even innocuous looking commercial spam, intended to sub-
vert content filters, typically includes a link to an advertised
service — thereby providing a basis for differentiation. A
popular open source solution is SpamAssassin [14], although
there are many competing commercial alternatives. An in-
teresting approach from Marsono, et al. [13] also analyzes
individual SMTP packets. To alleviate the burden of packet
and message reassembly, their scheme proposes per-packet
content analysis and filtering.

Our system, SpamFlow, does not perform any content
analysis on the messages themselves. By providing an al-
ternative classification mechanism, SpamFlow helps address
blocking innocuous junk mail, for instance nonsense emails
that are likely used to “detrain” Bayesian filters [26].

Collaborative Filtering: Spam is typically sent to many
users thereby providing a signature. By aggregating the
collective spam of a distributed set of users, collaborative
filtering [17, 23] aims to prevent previously marked spam
messages from being accepted. For example, popular web
mail clients can easily provide collaborative filtering as their
servers are under common administrative control and can
leverage spam marked by one user to block spam to other
users. Unfortunately, not all mail installations are large
enough to take advantage of collaborative filtering and are
unwilling to rely on vulnerable centralized repositories. Fur-
ther, spammers can trivially make each spam unique in an
effort to avoid collaborative techniques.

Reputation Systems: Reputation systems attempt to
aggregate historical knowledge over specific MTA [11] IP
addresses or mail domains. For instance, a large number
of messages to unknown recipients might be recognized as
a dictionary attack. MTAs that continually send undeliver-
able mail are given a low reputation. Often, spam honeypots
are used in conjunction with reputation systems to gather
additional data on spam origination. MTAs which have pre-
viously sent spam are likely to continue sending spam. Real-
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Information (MI) and Random (RND) feature selection with an SVM model. The points represent average
performance across nodes in our data set, while the error bars show the standard deviation.

time databases [24, 22, 21] of these offending MTAs and IP
addresses provide blacklists which MTAs can query before
accepting mail. However, Ramachandran’s analysis of DNS
blacklists [19] shows that as much as 35% of spam is sent
from IP addresses not listed in common blacklists. Their
work brings to light an important point about the dynamism
of IP addresses in relation to spam. Not only are the IP ad-
dresses of botnets changing as hosts acquire new addresses,
spammers are rapidly changing addresses in order to evade
blacklist reputation schemes. Our SpamFlow, however, has
no dependence on IP addresses making it particularly at-
tractive in defending against botnet spam.

Authentication Schemes: Authentication schemes at-
tempt to verify the sender or sender’s domain to prevent
spoofing-based attacks. Sender Policy Framework [27] limits
IP addresses to sourcing mail only for authorized domains.
Domain keys [2] uses public keys to associate each email
with an entity.

Characterization Studies: Casado et al. perform pas-
sive flow analysis on approximately 25,000 spam messages
to determine bottleneck bandwidths [5]. Their study finds
significant modes at modem, Ethernet and OC-12 speeds,
suggesting that spammers employ both farms of low-speed
as well as high speed servers. In contrast, we perform a de-
tailed passive flow analysis in order to find relevant features
for forming classification decisions.

Brodsky’s trinity system [4] identifies botnets by counting
email volumes, thereby identifying spam without content
analysis. Similarly, the spamHINTS project [6] leverages
the sending patterns of spammers to identify the sources
of spam. In addition to analyzing server logs, spamHINTS
proposes to examine sampled flow data from a network ex-
change point to obtain a large cross section of email traf-
fic patterns and volumes. For instance, hosts that source
email continually or have particular patterns can be identi-
fied through a set of heuristics. In contrast, our work ana-
lyzes the individual packets of SMTP transactions to obtain
much more detailed flow information, e.g. congestion win-
dows and round trip times. Further, SpamFlow relies on
machine learning techniques rather than heuristics to build
a classification system.

Other efforts have explored cross-layer frameworks, for

instance artificially manipulating receiver TCP behavior in
order to dampen connections from suspected spam sources
[12]. With TCP dampening, incoming mail connections are
slowed based on traditional content and reputation metrics.
SpamFlow also takes a cross-layer approach, but uses TCP
only to discern spam.

Our work is in a similar spirit to [18] which attempts
to characterize the network properties of spammers, for in-
stance the IP blocks to which they belong. Instead, by tak-
ing a step up the protocol stack and examining the transport
level properties of spam, we hope to take advantage of pre-
viously unexploited information.

5. CONCLUSIONS AND FUTURE WORK

Our results are promising, demonstrating that even rough
metrics of a flow’s character can aid in differentiating incom-
ing emails. By providing a method that does not rely on
either content or reputation analysis, SpamFlow is a poten-
tially useful tool in mitigating spam. Whereas reputation
systems are vulnerable to IP address dynamics, SpamFlow
has no reliance on addresses. While content analysis is easy
to game, SpamFlow attempts to exploit the fundamental
character of spam traffic. SpamFlow requires no changes to
the SMTP protocol, email client software or sender MTAs,
allowing for immediate and incremental deployment. We
plan to gather a significantly larger data set that includes
more valid messages and additional features.

Because TCP flow information is not available to the
application layer, our implementation relies on a separate,
promiscuous libpcap [9] flow aggregation process with which
SpamFlow communicates. The best system approach to ex-
posing flow statistics to applications is a subject of current
research. With minor additional integration, we expect to
release a packaged version of our working SpamFlow imple-
mentation suitable for public consumption.

Can spammers adapt and avoid a transport-based classi-
fication scheme? By utilizing one of the fundamental weak-
nesses of spammers, their need to send large volumes of spam
on bandwidth constrained links, we believe SpamFlow is dif-
ficult for spammers to evade. A spammer might send spam
at a lower rate or upgrade their infrastructure in order to
remove any congestion effects from appearing in their flows.



However, either strategy is likely to impose monetary and
time costs on the spammer.

The initial RTT is the strongest indication of spam for our
data set. A spammer might attempt to artificially lower the
inferred RTT by optimistically acknowledging packets that
have not yet been received. However, an adversary cannot
reliably know the remote host’s initial sequence number for
the TCP connection and therefore cannot easily fake the
initial RTT. Such attempts to hack TCP to disguise the
effects we observe are likely to expose other features, for
instance retransmits and duplicate packets.

The observed spam RTT may vary for MTAs in coun-
tries other than ours and other mail users may have differ-
ent email interactions with geographically dispersed MTAs.
However, such differences demonstrate the strength of a sta-
tistical approach. Just as content based filtering is personal-
ized for individual users, the particular features for transport
based filtering can be tailored to the end recipients.

Because SpamFlow performs neither content nor reputa-
tion analysis, its functionality can be pushed into the net-
work core without compromising privacy concerns. Spam-
Flow is unique in this regard. In addition, a wider cross-

sectional view would likely improve SpamFlow’s performance.

Utilizing available flow information may aid not only in
preventing spam, but also other types of attacks that origi-
nate from botnets and compromised machines. For instance,
denial of service attacks similarly rely on sending large quan-
tities of data over constrained links. Additional experiments
will allow us to better understand the broader applicability
of our approach.

Our hope is that this work serves as a step forward in
providing a means to combat spam and impose a greater
cost on parties sourcing spam.
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